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We present the entropy barrier model which was proposed by Sadler and Gilmer as a model for polymer 
crystallization with chain folding in the roughening regime. We demonstrate how this model can be adapted 
and extended to deal with a wide range of crystallization phenomena. In particular it has been brought 
into agreement with growth rates and lamellar thicknesses of a specific polymer (PEEK); it offers a new 
approach to copolymer crystallization and melting and proves able to simulate crystallization under 
transient conditions. 
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INTRODUCTION 

Polymer crystals typically grow in the form of thin 
lamellae with chain-folding 1 back and forth across the 
thin dimension of the crystal (Figure I). This morphology 
is understood to be a consequence of a free energy 
barrier 2-5 which kinetically limits the growth of thicker 
crystals. The so-called nucleation models 2-4 are based 
on the assumption that a secondary nucleation process 
forms a barrier to the crystallization of each layer of 
stems onto the growth face (Figures 1 and 3a). This is a 
reasonable model if the growth conditions are such that 
the interface is smooth. A typical example of this type of 
growth is the polyethylene lozenge shown in Figure 2a. 

There is, however, strong evidence 5 of crystallization 
with rounded edges at low supercooling (Figure 2b). 
Despite recent attempts to explain these curved faces 
within a nucleation theory concept 6'7 the criticism 5'a-1° 
still holds that these models miss out one important 
contribution to the growth process. If the density of steps 
on the growth face is high (Figure 1, inset) small chain 
segments can attach anywhere without creating any extra 
surface. There is no or only a very small enthapy barrier. 
The multitude of possible chain configurations (Figure 3) 
which are allowed as intermediate stages of the growth 
process leads to an entropic growth barrier. It has been 
shown a-l° that this mechanism alone suffices to explain 
the basic phenomenological laws of polymer crystalliz- 
ation, namely that the growth rate behaves like 

G ~ e x p ( -  Ks/T A T) (1) 

and the lamellar thickness like 

I = a/A T + tSl (2) 

where T is the crystallization temperature, AT the 
supercooling, Kg a constant, and t~l a small constant. 

In the following section the basic ideas of the entropy 
barrier model will be presented. We aim to show how 
this model can be applied to a wide range of crystalliz- 
ation processes of homo- and copolymers. 
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SUMMARY OF THE SADLER/GILMER 
MODEL 
The main concepts of the Sadler/Gilmer model are those 
of 'blind-attachment' and 'pinning '8'9. As a chain molecule 
attaches to a rough growth face it does not necessarily 
choose a conformation which is suitable for later stages 
of growth, i.e. the stem length lies below the limit required 
for thermodynamic stability (Figures 3b and c). It forms 
chain folds and loops which constitute 'pinned' surface 
sites; i.e. further attachment onto these sites is impossible. 
Therefore, growth tends to get frustrated, i.e. blocked by 
non-viable chain configurations. Net advance of the 
growth face can only occur by a constant on and offflux of 
segments which gradually sorts out chain conformations 
suitable for incorporation into the body of the crystal. 

These concepts have been built into a model s which 
regards the polymer molecule as a sequence of so-called 
units (chain segments of a few monomers) which can 
attach and detach according to rate constants as if they 
were independent entities. The only effect of the chain 
connectivity is considered to be the pinning of certain 
surface sites as discussed above. This is taken into account 
by a set of rules which effectively limit the number of 
sites available for attachment and detachment. 

The work presented in this paper is based on a simple 
two-dimensional version of the Sadler/Gilmer model 1°. 
A schematic representation of this 'row model' is shown 
in Figure 4. A row of stems is cut out of the crystal 
perpendicular to the growth face, neglecting all lateral 
correlations. This is a good representation of the lamella 
if the surface is sufficiently rough and lateral correlations 
are therefore small. 

The rate constants are calculated from a set of nearest 
neighbour interaction energies on a square lattice assum- 
ing detailed balance to hold between neighbouring states. 
The ratio of 'off' to 'on' rate constants is fixed by the 
interaction energy e and the number of occupied nearest 
neighbour sites m, the equilibrium melting point T ° and 
the crystallization temperature To: 

" k- /k  ÷ =exp(2e/kT°-me/kTc) (3) 

The pinning rules are particularly simple. Attachments 
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Figure 1 Schematic representation of a polymer crystal indicating the 
spreading of a layer of stems on the growth face as envisaged by 
nucleation theories. The inset shows the Sadler/Gilmer view of the 
rough growth face 
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Figure 2 Outlines of shapes of polyethylene single crystals grown from 
solution (courtesy of S. Organ). (a) At high supercooling, xylene, 
Tc = 70°C. (b) At low supercooling, hexatriacontane, Tc = 115°C 
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Figure 3 'Fine grained' model of chain folding crystallization as the 
'zippering down' of monomer segments (represented by squares). (a) 
Chain folds only on reaching the specified lamellar thickness. This 
process is equivalent to the deposition of complete stems 3. (b), (c) Chain 
folding allowed at any stage. Fluctuations in stem length involving 
folding and unfolding become important. Nucleation models which 
incorporate such processes to a limited extent have been investigated 
by Point 11, Di Marzio and Guttman 12 and DupirC 3 

and detachments are only allowed at the outermost 
position (see Figure 4). 

On this basis the crystallization kinetics can either be 
simulated using Monte Carlo (MC) techniques a or 
formulated as a set of rate equations which can be solved 
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numerically 1°. The former is more intuitive because on 
and off events of units are simulated directly and the 
lamellar growth can be observed in real time on the 
screen. The statistical uncertainties are considerable 
however, and the determination of growth rates and 
lamellar thicknesses requires averaging over many simu- 
lation runs. The latter, on the other hand, is an ensemble 
method and yields a distribution of stem lengths ck(i), 
i.e. the fraction of stems at position k which have a length 
of i units. The statistical error is negligible but the direct 
information about rearrangements of individual lamellae 
is lost. 

In the following sections we aim to show how both 
methods have been applied to handle various growth 
processes. 

ISOTHERMAL HOMOPOLYMER 
CRYSTALLIZATION 

Rate equation as well as MC methods have been used 
by Sadler and Gilmer to determine steady state growth 
rate and lamellar thickness curves for model homo- 
polymers 8,1°. They could show that the typical 
phenomenological growth equations (1) and (2) are 
reproduced. 

Recently, we have adapted the model parameters to 
values specific to poly(aryl-ether-ether-ketone), PEEK, 
and found 14, considering the simplicity of the model, 
surprisingly good agreement with experimental growth 
rate and lamellar thickness data. 

ISOTHERMAL COPOLYMER 
CRYSTALLIZATION 

The concepts of 'blind-attachment' and 'pinning' lend 
themselves to an application to copolymer crystalliz- 
ation. In the simplest case of comonomer exclusion from 
the crystalline phase the presence of non-crystallizable 
units simply increases the degree of pinning. Consider 
e.g. a random distribution of crystallizable units (called 
'A') along the chain with a sequence perpetuation 

ii odd,t,On 
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Figure 4 Representation of the row model. Modification to the length 
of the stems is only permitted at the outermost end of the row (that 
is at k= 1). The length may be increased or decreased by one unit, 
stems of length unity can be removed, and a new stem of one unit can 
be created adjacent to the previous outermost stem 
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probability p. The on-rate constant at position i up the 
stem is then reduced from its homopolymer value k~- by 
the probability of finding a sequence of i consecutive A 
units: 

k+(i)=kgp ('-') (4) 
With these on rates and the off rates unchanged we have 
solved the copolymer rate equations and obtained the 
relevant steady-state variables as in the homopolymer 
case 15. 

The most important results are as follows. 

Growth rates and apparent melting points. The growth 
rates at a given crystallization temperature decrease with 
increasing comonomer content x =  1 - p  (Figure 5a). As 
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Figure $ Growth rate and lamellar thickness dependence on tempera- 
ture (scaled by the homopolymer melting point T~) of the model 
homopolymer and random copolymers. (a) Growth rates, scaled by 
the on rate constant k o. The arrows indicate the apparent melting 
points T~°P(x). (b) Lamellar thicknesses in number of basic growth 
units. The stars mark the maximum copolymer thicknesses l,~x(X) at 
TC*P(x). T is the crossover temperature where (for x~<0.15) l is 
independent of x. The uncertainty in the data points is small compared 
with the size of the symbols 
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COMONOMER CONCENTRATION 

Figure 6 Copolymer melting point depression. Shown are the equi- 
.librium Fiery result (calculated with the same heat of fusion as in our 
model), apparent melting points from our model and maximum melting 
temperatures of branched polyethylene. The temperatures are scaled 
by T~ and the comonomer concentration is given in mole percent 

the temperature is increased the copolymer rates diverge 
more and more from the homopolymer curve until they 
eventually go through zero. This defines an apparent 
copolymer melting point T~P(x). T~P(x) (Figure 6) 
decreases with increasing comonomer concentration x 
much more steeply than the Flory equilibrium melting 
point depression 16, but compares well with melting 
points of zero-entropy production experiments 17. We 
have argued 15 that this method is closely related to our 
model. 

Lamellar thickness. The steady-state average lamellar 
thicknesses (Figure 5b) show a crossover from a low 
temperature regime where the lameUar thickness decreases 
on increasing the proportion of non-crystallizable material 
to a high temperature regime where the reverse is the 
case. Up to a comonomer concentration of at least 15 % 
we observe a crossover temperature T~ at which the 
lamellar thickness is independent of comonomer content 
and equal to the homopolymer thickness. At the apparent 
melting point T~P(x) the lamellar thickness reaches a 
finite maximum value lm.x(X) which decreases with 
increasing comonomer content. 

These results have been confirmed by MC simulation I s. 
This method, furthermore, allows the treatment of the 
case of inclusion of comonomer units (called 'B') as 
defects into the crystal. The free energy gain of crystal- 
lization, Af, is then reduced, or indeed outweighed, by 
a free energy penalty fd(eAa, eBB) for AB and BB nearest 
neighbour interactions in the crystal lattice. (A similar 
approach to copolymer crystallization but within the 
framework of a mean field nucleation theory was taken 
by Helfand and Lauritzen19.) The ratio of off to on rate 
constants, equation (3), becomes: 

k- (m)/k~ = exp{2e/kT ° -  [me --fd(eAn, ene)]/kT} (5) 

In its most general form this model allows the simulation 
of copolymer growth kinetics for any choice of AA, AB 
and BB interaction energies. As a simple example we 
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Figure 7 Example of an AB copolymer generated by MC simulation. 
(The arrow indicates the growth direction.) The cross-hatched area 
represents A units. The B units (diagonal lines) attract each other and 
have formed a few clusters in the crystal. The long projection of B's at 
the growth front is likely to come off again if growth continues 
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Figure 8 Concentration of B's in the crystal against their concentration 
along the chain. The S-shaped curve shows that the respective minority 
component is strongly suppressed from entering the crystalline phase 
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temperature decreases with increasing comonomer content and has a 
singular minimum at equal proportions of A and B 
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present here the case of isodimorphism, where both A's 
and B's can crystallize into an A or B homopolymer 
crystal but are defects in the respective cocrystals. For  
simplicity we have chosen the AA and BB interactions 
to be equal and ascribed to the AB interaction a free 
energy penalty CAB. A typical lamella as grown by MC 
simulation is shown in Figure 7. It can be seen that the 
B's form small dusters in the crystal. 

If we fix the crystallization temperature and vary the 
concentration of B's along the chain from x = 0 to 1 we 
notice how the respective minority component is prefer- 
entially excluded from the crystal because of the energy 
penalty (Figure 8). At exactly equal amounts of A and 
B, the concentration curve has a singularity. Random 
fluctuations decide which population gains the majority 
and these clusters will then grow. Therefore, the distri- 
bution of A's and B's varies strongly from case to case. 
It is not surprising that the growth rate has a minimum 
at this point (Figure 9). The concentration of defects 
which enters the crystal, CB, is strongly dependent on 
supercooling (Figure 10a). At high supercoolings the free 
energy driving force is so strong that the defects are 
incorporated into the crystal at almost the same concen- 
tration as they occur along the chain. At lower super- 
coolings growth is slower so that there is time to sort 
out energetically more favourable configurations. This is 
in qualitative agreement with the result of Helfand and 
Lauritzen 19. Similarly, we find agreement concerning the 
thickness of the copolymer lamellae in comparison to the 
pure ones grown at the same temperature (Figure lob). 
The copolymer needs extra thickness to compensate for 
the free energy loss due to the defects. The supercooling 
dependence of defect concentration and lamellar thickness 
is such that their product, i.e. the actual number of defects 
per stem (however long) is independent of supercooling 
(Figure I0c). 

This example should just serve to demonstrate the 
capabilities of this new approach to copolymer crystal- 
lization and further investigations are presently under 
way. 

TRANSIENT CRYSTALLIZATION KINETICS 

Crystallization experiments often involve non-isothermal 
conditions. Under such circumstances the kinetics cannot 
settle into a steady state but rather develop through 
transient states which are beyond the reach of nucleation 
type models. The rate theory row model in its most 
comprehensive form 14 however, is capable of treating 
this problem. In each time step we simply calculate a 
new set of rate constants according to the temperature 
prevailing at that instant and update the lamellar 
configuration by numerical integration. With this extended 
model we have studied the cases of crystallization during 
heating at a constant rate and crystallization under 
stepwise changes in temperature. A lameUa which had 
reached its steady state thickness lo at temperature To 
was used as an initial configuration. First, we consider 
the case of constant heating. Figure 11 shows the position 
and thickness of the lamella in a sequence of equal time 
steps. It can clearly be seen how the lamellar thickness 
increases trying to keep above the limit required for 
thermodynamic stability. But even at extremely slow 
heating rates thickening is not fast enough and the growth 
rate decreases and eventually goes through zero. This 
simulation is computationally very expensive, however. 
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Figure 10 Supercooling (relative to the equilibrium homopolymer 
melting point T~) dependence of: (a) the defect concentration CB; (b) 
the lamellar thickness l; and (c) the product of/and CB, i.e. the number 
of defects per stem. (The strong fluctuations are a result of the statistical 
uncertainty of the MC method and would be reduced by averaging 
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Figure 11 Lamellar growth during heating at a constant rate simulated by the rate equation 
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The case shown in Figure 11, for example, has taken 
about  150h of C P U  time on an A M T - D A P  510 array 
processor. Second, we have submitted a lamella grown 
onto a substrate to an instantaneous rise in temperature. 
The step was taken to be so large that the lamellar 
thickness lo lay below the minimum stable thickness at 
the new temperature. As we observe in Figure 12 the 
crystal starts melting back while thickening at the same 
time. The thickening is fastest near the substrate. At this 
point it is important  to remember  that on and off events 
are restricted to the growth front by the pinning rules. 
The thickening in the bulk must therefore be due to 
fluctuations of individual lamellae in the ensemble which 
take their hypothetical growth fronts right back to the 
substrate onto which they can grow again at a more 
stable thickness. A third interesting case is a series of 

small increases and decreases in temperature rather like 
those used by Dosirre et al. 2° in their isochronous 
decoration technique. The growth sequence (Figure 13) 
shows the steps this leaves on the surface. 

These examples should only serve to illustrate the 
model and its possible applications. Further and more 

21 detailed results will be p)~blished elsewhere . 

C O N C L U S I O N S  

We have presented a very simple version of the Sadler/ 
Gilmer model of polymer crystallization which is based 
on the assumption that an entropy barrier is the rate 
determining factor under rough surface conditions. 

We have demonstrated how this model, using either 
rate theory or MC techniques, can be applied to a wide 
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range  of  c rys ta l l iza t ion  processes  and  offers new insight  
in to  areas  l ike c o p o l y m e r  c rys ta l l iza t ion  and  t rans ient  
kinetics.  
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